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Abstract. The quantum polarization and phase properties of an electric dipole radiation are
examined. It is shown that, unlike the classical picture, the quantum description of polarization
needs nine independent Stokes operators, forming a representation ofSU(3) sub-algebra in the
Weyl–Heisenberg algebra of photons. A corresponding Cartan algebra determines the cosine and
sine of the radiation phase operators. A new representation of dipole photons is proposed. The
generators of the Cartan algebra are diagonal in this representation so that the corresponding number
states describe the number of photons with given radiation phase. The eigenstates of the radiation
phase are determined. They have a discrete spectrum and natural behaviour in the classical limit.
The relation between the radiation phase, operational phases and the Pegg–Barnett approach is
discussed.

1. Introduction

It is well known that quantum electrodynamics describes a pure multipole radiation generated
by an atomic or molecular transition in terms of ‘spherical’ photons with given angular
momentum and parity [1]. The angular momentumEJ of a quantum mechanical system is
usually specified by a representation of theSU(2). If the corresponding enveloping algebra
contains a uniquely defined scalar (the Casimir operator), the polar decomposition ofEJ can be
obtained [2]. This polar decomposition determines a dual representation ofSU(2) expressed
in terms of so-calledphase states[2], describing the quantum phase of the angular momentum.

Although the angular momentumEM of a multipole radiation is well defined in terms of
the spherical photons [1], the polar decomposition ofEM is impossible. The reason is thatEM
is represented by generators of anSU(2) sub-algebrawhich has no isotype representation [3]
in the Weyl–Heisenberg algebra of photon operators. This means that the Casimir operator
cannot be uniquely determined in the whole Hilbert spaceHR of photon states. Hence, the
quantum phase of the angular momentum of a multipole radiation cannot be determined by
the method of [2] valid for the quantum mechanical systems.

An approach focused on overcoming this difficulty has been proposed recently [4]. The
main idea, which seems to be a very natural one, is to consider the radiation of a given
quantum source rather than a free electromagnetic field. Even in the classical picture, the
multipole radiation can be determined completely only if the source functions, describing a
localized source at the origin, are known (e.g., see [5]). Within the quantum picture, we
can take into consideration the ‘source dependence’ of radiation in the following way. Since
the total angular momentumEJ + EM is conserved in the process of generation, we can first
construct the polar decomposition ofEJ in the(2j + 1)-dimensional atomic Hilbert spaceHA,
following the method by Vourdas [2]. Then, for the ‘phase-dependent’ dual representation of
the atomicSU(2)algebra, we have to determine the radiation counterpart, which consists of the
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operators complementary to the atomic operators with respect to the integrals of motion [4,6].
In particular, the cosine and sine of the so-calledradiationphase have been determined in this
way for the electric dipole radiation by a two-level atom [4, 6]. The radiation phase is, by
construction, the quantum phase of angular momentum of radiation.

Many attempts have been made to define the quantum phase of light via the angular
momentum (e.g., see [7]). The new element of our approach [4] is that we determine the
quantum phase ofradiation via the quantum phase of angular momentum of itssource. We
also note that one of the most popular and important methods in the field of quantum phase,
proposed by Pegg and Barnett [8] (for a recent review, see [9]), is based on acontractionof
the infinite-dimensional Hilbert space of photon statesHR. Within this method, the quantum
phase variable is determined first in ans-dimensional (s is a finite integer) sub-space ofHR,
and the formal limits →∞ is taken only after the averages have been calculated. In contrast,
we consider anextendedspace of statesHA ⊗HR in which the quantum phase of radiation is
determined by mapping of corresponding operators fromHA intoHR, using the conservation
law. By definition, the radiation phase is expressed in terms of whatcan be generatedby a
given quantum source. In some sense, our approach is complementary to that proposed by
Mandelet al [10], in which the quantum phase is determined in terms ofwhat can be measured.

In recent publications [11] we have shown that the radiation phase as defined in [4] has close
connection with the generalized Stokes operators introduced in [12] to describe the polarization
properties of the electric dipole radiation in the quantum domain. This is not surprising, because
the radiation phase describes the quantum phase of angular momentum which, generally
speaking, consists of the spin and ‘orbital’ contributions, while the polarization is defined
to be a given spin state of photons (e.g., see [13]). We note that some attempts to determine the
quantum phase (or phase difference) in terms of polarization are known [14]. The polarization
has been described in [14] by conventional Stokes operators of a monochromatic plane wave
(free electromagnetic field) and the quantum phase variable has been defined in the spirit of the
Pegg–Barnett approach [8,9]. This picture of polarization deals with thetransversal anisotropy
of the electric field. In the case of multipole radiation, in addition to the transversal components
the polarization always has the radial component, at least in the near and intermediate zones [5],
and thespatial anisotropyshould be considered rather than the transversal one. In spite of the
fact that the radial component usually has low intensity at far distances, it may strongly influence
the quantum fluctuations of the polarization of the two other components [12]. Therefore it
cannot be neglected, even in the vacuum state.

In the present paper we continue the discussion of the radiation phase [4]. We complete
the quantum description of the polarization of electric dipole radiation. We examine the
spectrum of the cosine and sine of radiation phase operators and show that the eigenstates of
these operators are certain new Fock number states, forming a dual representation with respect
to the conventional number states of dipole photons. In section 2, based on our previous
results [4,6,11,12], we briefly discuss the ‘transmission’ of quantum phase information from
the atomic angular momentum to photons. In section 3 we consider the quantum polarization
properties of the electric dipole radiation in the quantum domain. It is shown that the total
set of Stokes operators is determined in this case by the nine generators of theSU(3) sub-
algebra in the Weyl–Heisenberg algebra of dipole photons. The Cartan algebra of thisSU(3)
determines the cosine and sine of the radiation phase operators. In section 4 we introduce the
dual representation of the dipole photons via some canonical transformation and then define
the radiation phase statesas the number states of dual photons. In section 5 we discuss the
cosine and sine of the radiation phase operators. We conclude in section 6 with a discussion
of our results.
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2. Transmission of quantum phase information between atom and photons

Following [6], consider a two-level atom with the electric dipole transition between the levels
with angular momentaj = 1 andj ′ = 0, situated at the centre of an ideal spherical cavity.
The excited atomic state|j = 1;m = 0,±1〉 is triple degenerated in this case. In the process
of radiation, a photon takes away the angular momentumj = 1 and projectionm = 0,±1 of
the corresponding sub-level of the excited atomic state. If we introduce the atomic operators
Rmm′ = ||m〉〈m′||, where

||m〉 ≡ |j = 1;m〉 (1)

the angular momentumEJ of the excited state can be represented by the following generators
of theSU(2) algebra [6]:

Jz = R++ − R−−
J+ =

√
2(R+0 +R0−)

J− =
√

2(R0+ +R−0)

(2)

so that [J+, J−] = 2Jz, [Jz, J±] = ±J±, and

EJ 2 = j (j + 1)
1∑

m=−1

Rmm = 2× 1A (3)

where1A is the unit operator in the three-dimensional space of states (1). Then, by performing
an analysis similar to that proposed by Vourdas [2], one can introduce the following exponential
of the quantum phase operator:

EA = R+0 +R0− +R−+ EAE+
A = 1A E3

A = EA (4)

the eigenstates of which

EA||φm〉 = eiφm ||φm〉 φm = 2mπ

3
m = 0,±1 ||φm〉 = 1√

3

1∑
m′=−1

e−im′φm ||m′〉

(5)

determine the basis inHA dual to (1). States (5) are usually called thephase states[2]. The
phase variable determined via the exponential of the phase operator (4) describes the azimuth
(longitude) of the angular momentum of the excited atomic state.

Any photon generated by the electric dipole transition under consideration has given
angular momentumj = 1, projectionm and parityP = −1. It is described by the annihilation
and creation operatorsam anda+

m [1] determined in the Hilbert space

HR =
1⊗

m=−1

H(m)R . (6)

Here the infinite-dimensional sub-spaceH(m)R is spanned by the countable set of Fock vectors
|nm〉, nm = 0, 1, 2, . . . , which obey the orthogonality condition〈n′m|nm〉 = δmm′δnn′ and the
completeness condition [1]

1⊗
m=−1

∞∑
nm=0

|nm〉〈nm| = 1 (7)

where1 is the unit operator in (6). The photon operators form in (6) a representation of the
Weyl–Heisenberg algebra with the commutation relation

[am, a
+
m′ ] = 1δmm′ . (8)
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The angular momentumEM of the electric dipole radiation is represented by the operators
(see [1])

Mz =
1∑

m=−1

ma+
mam

M+ =
√

2(a+
+a0 + a+

0a−)
M− =

√
2(a+

0a+ + a+
−a0)

(9)

forming a representation of theSU(2) sub-algebra in the Weyl–Heisenberg algebra (8). Due
to the conservation of angular momentum in the process of radiation, the operatorsJp +Mp

(p = z,±) are the integrals of motion with respect to the modified Jaynes–Cummings
Hamiltonian [6]

H =
1∑

m=−1

[ωa+
mam + ω0Rmm + g(RmGam + a+

mRGm)] (10)

which describes the system under consideration. Hereω is the frequency of the cavity photons,
ω0 is the atomic transition frequency,g is the coupling constant, and

RGm ≡ |j ′ = 0;m′ = 0〉〈m||.
It is clear that EM2 determined by (9) is not aC-number in (6) (it is not proportional to the
unit operator (7)). Hence, the polar decomposition of (9) cannot be determined in the way
proposed in [2] for the quantum mechanical systems.

At the same time, one can define the operator [4,6,11]

E = a+
+a0 + a+

0a− + a+
−a+ (11)

which complements the atomic exponential of the quantum phase operator (5) with respect to
the integral of motion with the Hamiltonian (10)

[(EA + E),H ] = 0.

Unlike (5), it is not unitary, but it is normal:

[E, E+] = 0. (12)

The physical meaning of operator (11) is discussed in the next sections.

3. Polarization

Before we begin to discuss the dual representation of the photon operators, consider the
quantum polarization properties of the electric dipole radiation, both classical and quantum. In
the case of a classical monochromatic electric dipole radiation, only the inductionEB is always
orthogonal to the direction of propagation (the radial direction of outgoing spherical waves),
while the electric field

EE =
1∑

m=−1

[
i

k
bm E∇ × f (kr) EY1m

]
≡

1∑
m=−1

EEm (13)

has both radial and transversal components [5]. Here the coefficientsbm are determined
by the source,f (kr) is a certain combination of the Hankel functions describing the radial
dependence, andEY is the vector spherical harmonics describing the angular dependence of
radiation. The componentEE0 of field (13) describes a linearly polarized radial (longitudinal)
field, while EE± describe the circularly polarized components with positive and negative
helicities.
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Following the standard method [15], one can define the 3× 3 Hermitian matrix of
polarization whose elements are [12]

Pmm′ = E∗mEm′ . (14)

Clearly, this is a generalization of the conventional polarization matrix determined in the
circular polarization basis [15], which can be obtained from (14) atE0 = 0. It is a
straightforward matter to arrive at the conclusion that the nine elements of the polarization
matrix (14) can be completely determined by only five real parameters: precisely, by the three
intensitiesIm = Pmm and any two of the five classical phase differences

1mm′ ≡ argEm − argEm′

such that

1+0 +10− +1−+ = 0.

Then, the generalized Stokes parameters of the electric dipole radiation can be chosen as
follows [12]:

s0 =
∑
m

E∗mEm

s1 = 2Re(E∗+E0 +E∗0E− +E∗−E+)

s2 = 2Im (E∗+E0 +E∗0E− +E∗−E+)

s3 = E∗+E+ − E∗−E−
s4 = E∗+E+ +E∗−E− − 2E∗0E0.

(15)

They have very simple physical meaning. The parameters0 measures the total intensity,s1
ands2 give the phase information,s3 gives the preponderance of the positive helicity over the
negative one, and the parameters4 gives the preponderance of the linear (radial) polarization
over the two circular (transversal) ones.

Using the canonical quantization of the multipole field [1], we can obtain from (15) the
following generalized Stokes operators [12]:

S0 =
∑
m

a+
mam

S1 = (E + E+)

S2 = −i(E − E+)

S3 = a+
+a+ − a+

−a−
S4 = a+

+a+ + a+
−a− − 2a+

0a0.

(16)

Here the operatorE is determined by equation (11) and in view of (12) we get

[S1, S2] = [S1, S0] = [S2, S0] = 0 (17)

i.e., that corresponding physical quantities can be measured simultaneously. At the same time
[S1,2, S3,4] 6= 0, which implies corresponding uncertainty relations.

We now note that the total set of independent Hermitian bilinear forms under consideration
is represented by the following generators of theSU(3) sub-algebra in the Weyl–Heisenberg
algebra (8):

(a+
+a+ − a+

0a0) (a+
0a0 − a+

−a−) (a+
−a− − a+

+a+)
1
2(a

+
+a0 + a+

0a+)
1
2(a

+
0a− + a+

−a0)
1
2(a

+
−a+ + a+

+a−)
1

2i
(a+

+a0 − a+
0a+)

1

2i
(a+

0a− − a+
−a0)

1

2i
(a+
−a+ − a+

+a−).
(18)
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One can easily see that the five operators (16) can be expressed in terms of linear combinations
of different generators (18). Moreover, the operatorsS1 andS2 form the Cartan algebra in the
SU(3) algebra (18). But generators (18) contain much more information than (16). At the
same time, it is clear that (18) looks like a representation of the polarization matrix (14) in the
quantum domain. Unlike the classical case, the elements of the quantum polarization matrix
are specified by nine independent operators. Therefore, the number of independent Stokes
operators also should be equal to nine. This means that, in addition to operators (16), which
represent the quantum counterpart of the Stokes parameters (15), we have to introduce four
more Stokes operators. For example, the ‘additional’ Stokes operators can be chosen as

S5 = (a+
+a− + a+

−a+)

S6 = −i(a+
+a− − a+

−a+)

S7 = (a+
0a+ + a+

+a0)

S8 = −i(a+
0a+ + a+

+a0).

(19)

The operatorsS3 in (16) andS5, S6 in (19) are seen to form a representation of theSU(2)
sub-algebra, apart from an inessential factor. They formally coincide with the conventional
Stokes operators [14] determined for a monochromatic plane wave in the circular polarization
basis. Let us stress the formal character of this coincidence. The operatorsam, a

+
m in (16) and

(19) describe the spherical photons with given angular momentumj = 1 and projectionm,
while the photon operators in [14] are determined for the states with given linear momentum.

We now note that, in the important case of the vacuum radial field, the Stokes operatorsS1

andS2 from (16) andS5 andS6 from (19) describe the same values of the Stokes parameters.
Nevertheless, the operatorsS1,2 andS5,6 describe absolutely different physical quantities. To
illustrate this fact, consider the state|α+; 0;α−〉 of the radiation field, so that the two circularly
polarized components are in coherent states each, while the radial component is in the vacuum
state. Assume for simplicity that|α+| = |α−| ≡ |α|. Then

〈S1〉 = 〈S5〉 = 2|α|2 cos1+−
〈S2〉 = 〈S6〉 = 2|α|2 sin1+−

(20)

where1+− ≡ argα+ − argα−. Hence, the mean values of the physical quantities given byS1

andS2 (respectively,S5 andS6) coincide. At the same time, the variances of the corresponding
physical quantities are

V (S1) = 2|α|2(2 + cos1+−)
V (S2) = 2|α|2(2− cos1+−)
V (S5) = V (S6) = 2|α|2.

(21)

Hence, in spite of the equalities (20), the quantum fluctuations (21) of the physical quantities
described byS1,2 in (16) are much stronger than those described byS5,6 in (19). Moreover,
they are qualitatively different because of the phase-difference dependence of the first two
variances in (21). As a matter of fact, the operatorsS5,6, as well asS7,8 in (19), give some
extra phase information in addition to that described by the operatorsS1,2 in (16). The evident
advantage of the operatorsS1,2 is that they can be measured simultaneously.

4. Dual representation of photon operators

Turning back to the definition of the exponential of the quantum phase of the atomic angular
momentum operator (3), we note that the dual representation in terms of the phase states (4)
leads to the diagonal form ofEA

E (φ)A =
∑
m

eiφm ||φm〉〈φm|| ≡
∑
m

eiφmR(φ)mm.
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The operatorE determined by (11) as the quantum counterpart ofEA is not diagonal in the
representation of spherical photons. However, it can be diagonalized by the following canonical
transformation:

am = 1√
3

1∑
µ=−1

e−iµφmAµ

Aµ = 1√
3

1∑
m=−1

eimφµam

(22)

where

[Aµ,A
+
µ′ ] = 1δµµ′ .

φm = (2mπ)/
√

3 is the same ‘phase angle’ as in (5), and1 is determined by (7). Then, instead
of (11) we get

E (φ) =
1∑

µ=−1

eiφµA+
µAµ. (23)

Certainly,Aµ andA+
µ determine a new representation of the dipole photons. In view of the

analogy with the atomic operators, provided by the integrals of motion

[(EA + E),H ] = 0 [(E (φ)A + E (φ)), H ] = 0

one can choose to interpretAµ andA+
µ as the annihilation and creation operators of the dipole

photons with givenradiation phase. This radiation phase is the radiation counterpart of the
quantum phase of the atomic angular momentum. It is clear that the operatorsS0,1,2 are also
diagonal in the representation (22):

S
(φ)

0 =
∑
µ

A+
µAµ

S
(φ)

1 = 2
∑
µ

A+
µAµ cosφµ

S
(φ)

2 = 2
∑
µ

A+
µAµ sinφµ

(24)

while all the other operators in (16) and (19) are not.
As can be seen from (22), the operatorsAµ obey the same stability condition asam

∀µ,m am|vac〉 = Aµ|vac〉 = 0 |vac〉 ≡
⊗
m

|0m〉.

Hence,A+
µ can be used to generate the Fock number states

|νµ〉 = (νµ!)−1/2(A+
µ)
νµ |vac〉 (25)

such that

A+
µAµ|νµ〉 = νµ|νµ〉 νµ = 0, 1, 2, . . .

and

〈νµ|ν ′µ′ 〉 = δµµ′δνν ′
1⊗

µ=−1

∑
νµ

|νµ〉〈νµ| = 1

with the same unit operator as in (7). Hence, the states (25) form a basis in the Hilbert space
(6), as well as the states|nm〉. In analogy to the atomic phase states (4) and, in general, with
the quantum phase states introduced in [2], we call (25) theradiation phase states. It follows
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from (23) and (24) that the radiation phase states (25) are the eigenstates of the operatorsE (φ),
S
(φ)

0 , andS(φ)1,2 :

E (φ)|νµ〉 = νµeiφµ |νµ〉
S
(φ)

0 |νµ〉 = νµ|νµ〉 = S0

S
(φ)

1 |νµ〉 = 2νµ cos(2µπ/3)|νµ〉
S
(φ)

2 |νµ〉 = 2νµ sin(2µπ/3)|νµ〉.
(26)

The physical meaning of the radiation phase states can be illustrated with the aid of the Jaynes–
Cummings model of section 2. If the two-level atom described by the Hamiltonian (10) is
prepared in one of the atomic quantum phase states (4), it generates the dipole photon which
can be observed in the state|1µ〉 described by (25) atµ = m. Then, the Stokes operatorsS(φ)1,2
in (26), apart from a factor of two, give the cosine and sine of the quantum phase of the angular
momentum.

The above results lead to the conclusion that the radiation phase states (25) are dual with
respect to conventional number states|nm〉, like the atomic quantum phase states||φm〉 (4)
and conventional atomic states||m〉 (1). In turn, the operatorsAµ andA+

µ in (22) form the
representation of the Weyl–Heisenberg algebra of the dipole photons dual to the operatorsam
anda+

m.
Although the canonical transformation (22) has the very simple form of the finite Fourier

transformation, the connection between the conventional number states and the radiation phase
states (25) is not simple:

|νµ〉 =
√
νµ!

3νµ

νµ∑
n0=0

νµ−n0∑
n+=0

exp[i(νµ − n0 − 2n+)φµ]√
n0!n+!(νµ − n0 − n+)!

|n+; n0; νµ − n+ − n0〉. (27)

It is interesting that the ‘dual’ coherent states

|α(a)〉 =
∏
m

D(a)
m (α

(a))|vac〉 D(a)
m (α

(a)) ≡ exp(αma
+
m − H.c.)

|α(A)m 〉 =
∏
µ

D(A)
µ (α(A))|vac〉 D(A)

µ (α(A)) ≡ exp(α(A)µ A+
µ − H.c.).

are equivalent to within the following renormalization of the parameters:

α(a)m =
1√
3

∑
µ

e−iµφmα(A)µ

α(A)µ =
1√
3

∑
m

eimφµα(a)m .

(28)

If we consider as an example the same state|α+; 0;α−〉of the dipole radiation as at the end of the
previous section, we will see that it is represented by the dual coherent state|α(A)+ ;α(A)0 ;α(A)− 〉
with

α(A)+ =
1√
3
(α+ei2π/3 + α−e−i2π/3)

α
(A)
0 =

1√
3
(α+ + α−)

α
(A)
− =

1√
3
(α+e−i2π/3 + α−ei2π/3)

in which all the three ‘phase’ components of the dipole radiation are in the coherent states.
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5. Phase states and radiation phase

Taking into account the above results and especially relations (24) and (26), one can choose
to interpret the Stokes parameters corresponding to the operatorsS1,2 in (16) orS(φ)1,2 in (24)
as the non-normalized cosine and sine of the radiation phase. It should be stressed that this
interpretation follows the standard ideology of the classical definition of the cosine and sine of
the phase difference between two circularly polarized components [5,15] and the operational
definition of the cosine and sine operators of the quantum phase [10]. Consider the state

|φ〉 =
1⊗

µ=−1

|νµ〉 (29)

where|νµ〉 are the radiation phase states (25). It is clear that (29) is the eigenstate of the
operators (23) and (24). Since the operatorsE (φ), S(φ)1 , andS(φ)2 commute with the total
number of photonsS(φ)0 (see (23) and (24)), the eigenstates and eigenvalues of these operators
can be specified by the indexn = ∑µ νµ, describing the total number of photons in a given
state (29), and by an additional indexl, describing a given distribution ofn photons over three
independent ‘phase’ components of the dipole radiation labelled by indexµ. The total number
of possible differentl, corresponding to a givenn, is clearly

1
2(n + 2)(n + 1).

All one can expect is that the eigenvalues of the operators (23) and (24) are represented as

E (φ)|φ(n)l 〉 = ε(n)l eiϕ(n)l |φ(n)l 〉
S
(φ)

0 |φ(n)l 〉 = n|φ(n)l 〉
S
(φ)

1 |φ(n)l 〉 = 2ε(n)l cosϕ(n)l |φ(n)l 〉
S
(φ)

2 |φ(n)l 〉 = 2ε(n)l sinϕ(n)l |φ(n)l 〉

(30)

where|φ(n)l 〉 is the eigenstate (29) at givenn andl. Note that this choice of the eigenvalues
(30) corresponds to the above interpretation of the Stokes operatorsS

(φ)

1,2 . In view of (24) and
(26) the modulus of the eigenvalues (30) can be determined as

(ε
(n)
l )2 = 〈φ(n)l |E (φ)(E (φ))+|φ(n)l 〉 =

∑
µµ′

νµνµ′e
i(µ−µ′)2π/3

=
∑
µ

ν2
µ − (ν+ν0 + ν0ν− + ν−ν+) = n2 + 2(ν2

+ + ν2
−)− 3n(ν+ + ν−) + 3ν+ν−.

(31)

In turn, for the ‘phase eigenvalues’ϕ we get

tanϕ =
√

3(ν+ − ν−)
2ν0 − (ν+ + ν−)

. (32)

We now note that the cosine and sine of the radiation phase operators were defined in [4, 11]
by the relations

CR = KS1 SR = KS2 (33)

where the normalization coefficientK is determined from the condition

〈C2
R + S2

R〉 = 1 (34)

where 〈. . .〉 is the averaging over an arbitrary state of the dipole radiation. One can see
that condition (34) is similar to (31) in the case of averaging over the states|φ(n)l 〉. In this
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Table 1. List of eigenvalues of (31), (32) forn = 1–5.

n = 1 ε(1) = 1 ϕ
(1)
l = 2lπ/3 l = 0,±1

n = 2 ε(2) = 2 ϕ
(2)
l = 2lπ/3 l = 0,±1

ε(2) = 1 ϕ
(2)
l = (2l + 1)π/3 l = 0,±1

n = 3 ε(3) = 3 ϕ
(3)
l = 2lπ/3 l = 0,±1

ε(3) = √3 ϕ
(3)
l = (2l + 1)π/6 l = 0, 1, . . . ,5

n = 4 ε(4) = 4 ϕ
(4)
l = 2lπ/3 l = 0,±1

ε(4) = √7 ϕ
(4)
l = ± tan−1(

√
3/5) + 2lπ/3 l = 0,±1

ε(4) = 2 ϕ
(4)
l = (2l + 1)π/3 l = 0,±1

ε(4) = 1 ϕ
(4)
l = 2lπ/3 l = 0,±1

n = 5 ε(5) = 5 ϕ
(5)
l = 2lπ/3 l = 0,±1

ε(5) = √13 ϕ
(5)
l = tan−1(

√
3/7)± 2lπ/3 l = 0,±1

ϕ
(5)
l = ± tan−1(

√
3/7) + 2lπ/3 l = 0,±1

ε(5) = √7 ϕ
(5)
l = ± tan−1(

√
3/5) + π + 2lπ/3 l = 0,±1

ε(5) = 2 ϕ
(5)
l = 2lπ/3 l = 0,±1

ε(5) = 1 ϕ
(5)
l = (2l + 1)π/3 l = 0,±1

caseK = (2ε(n)l )−1. Hence, the phase states|φ(n)l 〉 (29) are the eigenstates of the radiation
cosine and sine operators (33). It is interesting that the eigenvalues of the phase variable
ϕ
(n)
l determined by (32) belong to the interval(0, 2π) and form a discrete set at anyn and
l = 1, 2, . . . , (n + 1)(n + 2)/2. The first few eigenvalues are shown in table 1 and figure 1.

It is not difficult to see that the averaging of (33) with respect to the vacuum state gives

〈vac|CR|vac〉 = 〈vac|SR|vac〉 = 0

while the variances areVvac(CR) = Vvac(SR) = 1
2. Hence, as one can expect, the vacuum

distribution of the radiation phase is uniform. A similar result can be also obtained in the case
of a single-mode coherent state|αµ〉.

Consider, again, the coherent state|α+; 0;α−〉 at |α+| = |α−| ≡ |α|, which was discussed
in sections 3 and 4. In this case, condition (34) gives

K = [4|α|2(2 + |α|2)]−1/2

so that

〈CR〉 = |α| cos1+−√
2 + |α|2

〈SR〉 = |α| sin1+−√
2 + |α|2

where1+− has the same meaning as above. One can see that at|α|2 → ∞ we get
〈CR〉 → cos1+− and〈SR〉 → sin1+−. In this limit, the variances

V (CR) = V (SR) = 2 + cos1+−
2(2 + |α|2)

tend to zero. Hence, the radiation phase (33) has the natural classical limit.
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Figure 1. The structure of eigenvalues (32). The bold lines correspond to the double-degenerated
eigenvalues.

Employing the formulae obtained at the end of section 4 then gives

|α+; 0;α−〉 =
1∏

µ=−1

e−|α
(A)
µ |2/2

∞∑
νµ=0

(α(A)µ )νµ√
νµ!
|νµ〉.

Taking into account that
∑

µ |α(A)µ |2 = 2|α|2, for the probability that the radiation field can be
observed in an arbitrary phase state (25) we get

|〈ν+; ν0; ν−|α+; 0;α−〉|2 = e−2|α|2
(

2

3

)n |α|2n
ν !

+ν0!ν−!

1∏
µ=−1

[1 + cos(1+− − 2µπ/3)]νµ (35)

wheren =∑µ νµ. One can see from (35) that this probability tends to zero when|α|2→ 0 or
|α|2 → ∞. This means that the eigenvalues of the radiation phase are distributed uniformly
over the interval(0, 2π) in the vacuum states as well as in the classical limit of high intensity
|α|2. Between these two extrema, the probability (35) has a maximum which might be
considerably high. It is interesting that the position of the maximum is completely determined
by the mean number of photons|αmax |2 = n, while the magnitude depends also on the phase
difference1+− (see figure 2).

We now note that the probability to have a given radiation phase in the coherent state
under consideration is much higher. Consider, for example, the eigenvalue of the radiation
phaseϕ = 2π/3. Employing equations (31) and (32) then gives the following properties of
the states corresponding to this radiation phase:

n− 3ν− = ε(n) ν+ = n− 2ν− ν0 = ν−.
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Figure 2. Probability (35) versus1+− atν+ = ν0, ν− = 1.

It is easy to see that the states obeying these conditions have the following structure:

|np − 2kp; kp; kp〉 (36)

wherep is an integer and for eachnp = 3p, 3p − 1, 3p − 2 the numberskp take the values
kp = 0, 1, . . . , p − 1. For example, atnp = 10 we getp = 4 andnp = 3p − 2, while the
states (36) are

|10; 0; 0〉 |8; 1; 1〉 |6; 2; 2〉 |4; 3; 3〉.
Consider first the states|np; 0; 0〉 in (36). Then, the probability (35) takes the value

Pnp ≡ |〈np; 0; 0|α+; 0;α−〉|2 = e−2|α|2
(

2

3

)np |α|2np
np!

[1 + cos(1+− − 2π/3)]np .

It is clear thatPnp reaches its maximum at1+− = 2π/3. Then the total probability of the
states|np; 0; 0〉 is

P =
∞∑
np=1

Pnp = e−2|α|2/3− e−2|α|2

(see figure 3). It is clear thatP gives the lower bound of the total probability to have the
radiation phaseϕ = 2π/3 in the coherent state|α+; 0;α−〉. The contribution of the other
states (36) can be calculated in the same way.

6. Conclusion

Let us briefly discuss our results. We have studied the angular momentum and polarization
of the electric dipole radiation by an atom or molecule. We have shown that the quantum
description of the polarization differs essentially from the classical picture. Although the
latter is based on the five generalized Stokes parameters (15), the former needs the nine Stokes
operators (16) and (19) which are represented by linear combinations of the generators (18) of
theSU(3) sub-algebra in the Weyl–Heisenberg algebra (8) of the dipole photons and by the
total number of photons. These nine Stokes operators describe the physical quantities with
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Figure 3. Lower boundary of probability to have the
radiation phaseϕ = 2π/3 as a function of|α|2 at
1+− = 2π/3.

essentially different quantum fluctuations. Two of the Stokes operators describing the phase
information in (16) and (19), preciselyS1 andS2, form the representation of the Cartan algebra
in SU(3) (18). Hence, the corresponding physical quantities can be measured at once. From
the physical point of view these two operators, apart from a normalization factor, give the
cosine and sine of the radiation phase (35).

The polar decomposition of theSU(2) algebra proposed by Vourdas [2] for a quantum
mechanical system is not possible in the case of the angular momentumEM (9) of the dipole
radiation. To determine the quantum phase states we have suggested a different approach,
based on the canonical transformation (22) of the photon operators and further definition of
the radiation phase states (25) as the number states of the dual photons. We have shown that
the radiation phase states (25) are the eigenstates of the cosine and sine of the radiation phase
operators. The discrete eigenvalues of the phase variable, determined by (31)–(34), lie in the
interval(0, 2π) and cover it uniformly in the classical limit provided by the coherent state of
the radiation field of high intensity. In the quantum domain of low intensities the probability
to observe a given eigenvalue of the radiation phase is calculated. Let us stress that, unlike the
Pegg–Barnet phase (or phase difference), the radiation phase is determined here by operators
(35) in thewhole Hilbert spacedirectly. The measurement of the Stokes operatorsS1, S2

or the radiation phase through the use of an eight-port homodyne detector has been briefly
discussed in [11]. Detailed investigation of the detection of spherical photons as well as the
use of another scheme (e.g., a six-port homodyne detector [17]) needs further discussion.

The most important result in the field of quantum phase was obtained by Mandelet al [10].
According to their analysis,there is no unique quantum phase variable, describing universally
the measured phase properties of light. This very strong statement obtained a totally convincing
confirmation in a number of recent experiments [10, 16]. In general, the quantum phase
variables can be divided into two classes. First of all, we have the pure operational phases
which are completely determined by the scheme of measurement. In addition, there might be
someinherentquantum phases related to the quantum properties of photons and obtained in the
process of generation. Since a photon can be specified by its energy, angular momentum and/or
linear momentum, the inherent phase should be determined by either the angular momentum
or linear momentum as the energy is a scalar. The former is connected with the spin state and
hence, with the polarization. This inherent quantum phase is just the radiation phase (35). The
latter can lead to some geometrical phase, which, for example, can be measured as the phase
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difference between two plane waves generated by one source in opposite directions.
We also note that both the operational phases and the radiation phase are determined in

terms ofbilinear Hermitian forms in the photon operators. At first sight, such a definition
runs counter to the original idea by Dirac to determine the Hermitian quantum phase vialinear
forms in the photon operators [18] (for a recent review see [9, 19]). Leaving aside Dirac’s
problem of existence of a Hermitian quantum phase variable of a harmonic oscillator, we
should emphasize that the use of bilinear forms seems to be quite reasonable from the physical
point of view. It can be argued in the following way. First, thevacuum field has no phase at all.
This is the same as saying that the vacuum state of photons is degenerated with respect to the
phase or that the phase is distributed uniformly over the vacuum. Thus, the inherent quantum
phase of a photon is generated by a source. This is not an unusual assumption. Actually, the
classical amplitudes of a multipole field are completely determined by the source functions [5].
Hence, the multipole photon operators, which are obtained by the quantization of the classical
amplitudes [1], are also specified by the source (e.g., see [20] and the discussion in [21]). This
means that the properties of a photon depend on the quantum properties of the source. The
‘information’ about the source is transmitted to the photon via the conservation laws (of energy,
linear momentum and angular momentum) which are always expressed in terms of bilinear
Hermitian forms in the photon operators. The ‘phase information’ should be transmitted in the
same way. This statement can be illustrated using the Jaynes–Cummings model of section 2.
Using the phase states (4) one can introduce the dual atomic operators

R
(φ)

µµ′ ≡ ||φµ〉〈φµ′ || R
(φ)

µG ≡ ||φµ〉〈G||.
Then, the simultaneous use of the dual representation of the atomic operators and the canonical
transformation (22) leads to the following form of the Hamiltonian (10):

H(φ) =
1∑

µ=−1

[ωA+
µAµ + ω0R

(φ)
µµ + g(R(φ)µGAµ + H.c.)] (37)

which has exactly the same operator structure as (10). Since the atomic operatorsR(φ) describe
here the transitions between the atomic phase states, and the operatorsA,A+ determine the
annihilation and creation of photons with given radiation phase, the interaction term in (37)
describes the transmission of the quantum phase information from the atom to photons.

In turn, the detection process is also based on the transmission of energy, linear momentum
or angular momentum from the photons to a detecting device. That is why the operational
phases are also determined in terms of the bilinear Hermitian forms in the photon operators [10].
By virtue of the above discussion, one can unify the operational idea [10] with that of our
approach [4] to determine the phase in terms ofwhat can be transmitted from a quantum
mechanical system to photons and vice versa.

Our consideration of radiation phase of the dipole radiation is based on the use of spherical
photons determined as the quantum counterpart of rotational invariant solutions of the wave
equation [1]. This means that the radiation is described in terms of photons with given energy
and angular momentum. At the same time, in the usual formulation of quantum optics,
the radiation field is considered in terms of states of photons with given energy andlinear
momentum, corresponding to the translational invariant solutions of the homogeneous wave
equation (e.g., see [15, 21]). Since the components of the angular and linear momenta do
not commute, the two representations of the quantum electromagnetic field are different in
principle. In particular, this difference is manifested in the presence of a radial (longitudinal)
component of the quantum multipole field, while the plane waves of photons are always
transversal with respect to the direction of the linear momentum. Thea priori neglect of the
radial component leads to violation of symmetry, i.e. to a change of the representation. In turn,
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the consistent consideration of this component leads to a more general picture of polarization
based on theSU(3) rather thanSU(2) algebra of Stokes operators. It is due to the existence of
the radial component that the phase-dependent Stokes operatorsS1 andS2 in (16), as well as
the cosine and sine of the radiation phase operators (33), commute with each and hence can be
measured at once. We showed in section 3 that the presence of the radial component even in the
vacuum state contributes into the quantum fluctuations of Stokes parameters. Let us note that
a similar contribution affects some other physical quantities as well. As a particular example,
the intensity of radiation with given polarization at given pointEr can be mentioned [22]. In
fact, the electric field (13) can be also represented as follows [13]:

EE(Er) =
1∑

µ=−1

Eχµ
1∑

m=−1

Vµm(Er)am

where Eχµ is the unit vector, corresponding to a spin state of photon. It is then clear that the
local intensity

Iµ(Er) = 〈E+
µ(Er)Eµ(Er)〉

contains the off-diagonal terms of the form〈a+
+a0〉, 〈a+

0a−〉 and conjugated terms. Hence, the
variance of intensity should contain an additional contribution, coming from these off-diagonal
terms.

Our considerations so far have been applied to the electric dipole radiation. As a final
remark, we note that the canonical transformation (22) can be generalized to the case of
arbitrary pure(j,m) multipole radiation as follows:

Ajµ = 1√
2j + 1

1∑
m=−1

eimφjµajm φjµ ≡ 2µπ√
2j + 1

. (38)

Using transformation (38) one can determine the radiation phase states of an arbitrary multipole
radiation in the same way as (25).
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